20 research outputs found

    Regularized Contrastive Masked Autoencoder Model for Machinery Anomaly Detection Using Diffusion-Based Data Augmentation

    Get PDF
    Unsupervised anomalous sound detection, especially self-supervised methods, plays a crucial role in differentiating unknown abnormal sounds of machines from normal sounds. Self-supervised learning can be divided into two main categories: Generative and Contrastive methods. While Generative methods mainly focus on reconstructing data, Contrastive learning methods refine data representations by leveraging the contrast between each sample and its augmented version. However, existing Contrastive learning methods for anomalous sound detection often have two main problems. The first one is that they mostly rely on simple augmentation techniques, such as time or frequency masking, which may introduce biases due to the limited diversity of real-world sounds and noises encountered in practical scenarios (e.g., factory noises combined with machine sounds). The second issue is dimension collapsing, which leads to learning a feature space with limited representation. To address the first shortcoming, we suggest a diffusion-based data augmentation method that employs ChatGPT and AudioLDM. Also, to address the second concern, we put forward a two-stage self-supervised model. In the first stage, we introduce a novel approach that combines Contrastive learning and masked autoencoders to pre-train on the MIMII and ToyADMOS2 datasets. This combination allows our model to capture both global and local features, leading to a more comprehensive representation of the data. In the second stage, we refine the audio representations for each machine ID by employing supervised Contrastive learning to fine-tune the pre-trained model. This process enhances the relationship between audio features originating from the same machine ID. Experiments show that our method outperforms most of the state-of-the-art self-supervised learning methods. Our suggested model achieves an average AUC and pAUC of 94.39% and 87.93% on the DCASE 2020 Challenge Task2 dataset, respectively

    A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments

    Get PDF
    Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system thatcan perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function.Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e.,human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups:normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval.Finally,a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention

    Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification

    Get PDF
    Least squares twin support vector machine (LSTSVM) is a relatively new version of support vector machine (SVM) based on non-parallel twin hyperplanes. Although, LSTSVM is an extremely efficient and fast algorithm for binary classification, its parameters depend on the nature of the problem. Problem dependent parameters make the process of tuning the algorithm with best values for parameters very difficult, which affects the accuracy of the algorithm. Simulated annealing (SA) is a random search technique proposed to find the global minimum of a cost function. It works by emulating the process where a metal slowly cooled so that its structure finally “freezes”. This freezing point happens at a minimum energy configuration. The goal of this paper is to improve the accuracy of the LSTSVMalgorithmby hybridizing it with simulated anneaing. Our research to date suggests that this improvement on the LSTSVM is made for the first time in this paper. Experimental results on several benchmark datasets demonstrate that the accuracy of the proposed algorithm is very promising when compared to other classification methods in the literature. In addition, computational time analysis of the algorithm showed the practicality of the proposed algorithm where the computational time of the algorithm falls between LSTSVM and SVM

    Care more about customers: unsupervised domain-independent aspect detection for sentiment analysis of customer reviews

    Get PDF
    With the rapid growth of user-generated content on the internet, automatic sentiment analysis of online customer reviews has become a hot research topic recently, but due to variety and wide range of products and services being reviewed on the internet, the supervised and domain-specific models are often not practical. As the number of reviews expands, it is essential to develop an efficient sentiment analysis model that is capable of extracting product aspects and determining the sentiments for these aspects. In this paper, we propose a novel unsupervised and domain-independent model for detecting explicit and implicit aspects in reviews for sentiment analysis. In the model, first a generalized method is proposed to learn multi-word aspects and then a set of heuristic rules is employed to take into account the influence of an opinion word on detecting the aspect. Second a new metric based on mutual information and aspect frequency is proposed to score aspects with a new bootstrapping iterative algorithm. The presented bootstrapping algorithm works with an unsupervised seed set. Third, two pruning methods based on the relations between aspects in reviews are presented to remove incorrect aspects. Finally the model employs an approach which uses explicit aspects and opinion words to identify implicit aspects. Utilizing extracted polarity lexicon, the approach maps each opinion word in the lexicon to the set of pre-extracted explicit aspects with a co-occurrence metric. The proposed model was evaluated on a collection of English product review datasets. The model does not require any labeled training data and it can be easily applied to other languages or other domains such as movie reviews. Experimental results show considerable improvements of our model over conventional unsupervised and supervised approaches
    corecore